AI alignment & security research

This page highlights research projects that have emerged from the MATS program, showcasing MATS fellows’ contributions to AI alignment, transparency, and security.

Towards a unified and verified understanding of group-operation networks

A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024). Notably, these models approximate equivariance in each input argument. We verify that our explanation applies to a large fraction of networks trained on this task by translating it into a compact proof of model performance, a quantitative evaluation of the extent to which we faithfully and concisely explain model internals. In the main text, we focus on the symmetric group S5. For models trained on this group, our explanation yields a guarantee of model accuracy that runs 3x faster than brute force and gives a>=95% accuracy bound for 45% of the models we trained. We were unable to obtain nontrivial non-vacuous accuracy bounds using only explanations from previous works.

Interpretability

Authors:

Wilson Wu, Louis Jaburi, Jacob Drori, Jason Gross

Alumni:

Wilson Wu, Louis Jaburi, Jacob Drori

Date:

Oct 9, 2024

Citations:

0

Gradient Routing: Masking Gradients to Localize Computation in Neural Networks

Neural networks are trained primarily based on their inputs and outputs, without regard for their internal mechanisms. These neglected mechanisms determine properties that are critical for safety, like (i) transparency; (ii) the absence of sensitive information or harmful capabilities; and (iii) reliable generalization of goals beyond the training distribution. To address this shortcoming, we introduce gradient routing, a training method that isolates capabilities to specific subregions of a neural network. Gradient routing applies data-dependent, weighted masks to gradients during backpropagation. These masks are supplied by the user in order to configure which parameters are updated by which data points. We show that gradient routing can be used to (1) learn representations which are partitioned in an interpretable way; (2) enable robust unlearning via ablation of a pre-specified network subregion; and (3) achieve scalable oversight of a reinforcement learner by localizing modules responsible for different behaviors. Throughout, we find that gradient routing localizes capabilities even when applied to a limited, ad-hoc subset of the data. We conclude that the approach holds promise for challenging, real-world applications where quality data are scarce.

Interpretability
Safeguards
Scalable Oversight

Authors:

Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul, Joseph Miller, Alexander Matt Turner

Alumni:

Joseph Miller, Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul

Date:

Oct 6, 2024

Citations:

14

Analyzing Probabilistic Methods for Evaluating Agent Capabilities

To mitigate risks from AI systems, we need to assess their capabilities accurately. This is especially difficult in cases where capabilities are only rarely displayed. Phuong et al. propose two methods that aim to obtain better estimates of the probability of an AI agent successfully completing a given task. The milestone method decomposes tasks into subtasks, aiming to improve overall success rate estimation, while the expert best-of-N method leverages human guidance as a proxy for the model's independent performance. Our analysis of these methods as Monte Carlo estimators reveals that while both effectively reduce variance compared to naive Monte Carlo sampling, they also introduce bias. Experimental results demonstrate that the milestone method underestimates true solve rates for many real-world tasks due to its constraining assumptions. The expert best-of-N method exhibits even more severe underestimation across all tasks, attributed to an inherently flawed re-weighting factor. To enhance the accuracy of capability estimates of AI agents on difficult tasks, we suggest future work should leverage the rich literature on Monte Carlo Estimators.

Dangerous Capability Evals

Authors:

Axel Højmark, Govind Pimpale, Arjun Panickssery, Marius Hobbhahn, Jérémy Scheurer

Alumni:

Axel Højmark, Govind Pimpale, Arjun Panickssery

Date:

Sep 24, 2024

Citations:

4

Training Neural Networks for Modularity aids Interpretability

An approach to improve network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We find pretrained models to be highly unclusterable and thus train models to be more modular using an ``enmeshment loss''function that encourages the formation of non-interacting clusters. Using automated interpretability measures, we show that our method finds clusters that learn different, disjoint, and smaller circuits for CIFAR-10 labels. Our approach provides a promising direction for making neural networks easier to interpret.

Interpretability

Authors:

Satvik Golechha, Dylan Cope, Nandi Schoots

Alumni:

Satvik Golechha

Date:

Sep 24, 2024

Citations:

1

Language Models Learn to Mislead Humans via RLHF

Language models (LMs) can produce errors that are hard to detect for humans, especially when the task is complex. RLHF, the most popular post-training method, may exacerbate this problem: to achieve higher rewards, LMs might get better at convincing humans that they are right even when they are wrong. We study this phenomenon under a standard RLHF pipeline, calling it"U-SOPHISTRY"since it is Unintended by model developers. Specifically, we ask time-constrained (e.g., 3-10 minutes) human subjects to evaluate the correctness of model outputs and calculate humans' accuracy against gold labels. On a question-answering task (QuALITY) and programming task (APPS), RLHF makes LMs better at convincing our subjects but not at completing the task correctly. RLHF also makes the model harder to evaluate: our subjects' false positive rate increases by 24.1% on QuALITY and 18.3% on APPS. Finally, we show that probing, a state-of-the-art approach for detecting Intended Sophistry (e.g. backdoored LMs), does not generalize to U-SOPHISTRY. Our results highlight an important failure mode of RLHF and call for more research in assisting humans to align them.

Scheming & Deception
Scalable Oversight
Alignment Training

Authors:

Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R. Bowman, He He, Shi Feng

Alumni:

Jiaxin Wen

Date:

Sep 19, 2024

Citations:

69

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features that we expect good SAEs to recover. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on chess and Othello transcripts. These settings carry natural collections of interpretable features -- for example, "there is a knight on F3" -- which we leverage into 

Interpretability

Authors:

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith, Claudio Mayrink Verdun, David Bau, Samuel Marks

Alumni:

Adam Karvonen, Can Rager, Benjamin Wright

Date:

Jul 31, 2024

Citations:

44

Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs

Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of'jailbreaking'techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.

Safeguards
Adversarial Robustness
Red-Teaming

Authors:

Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, Stephen Casper

Alumni:

Aidan Ewart, Aengus Lynch, Phillip Guo, Cindy Wu, Vivek Hebbar

Date:

Jul 22, 2024

Citations:

100

Planning in a recurrent neural network that plays Sokoban

Planning is essential for solving complex tasks, yet the internal mechanisms underlying planning in neural networks remain poorly understood. Building on prior work, we analyze a recurrent neural network (RNN) trained on Sokoban, a challenging puzzle requiring sequential, irreversible decisions. We find that the RNN has a causal plan representation which predicts its future actions about 50 steps in advance. The quality and length of the represented plan increases over the first few steps. We uncover a surprising behavior: the RNN"paces"in cycles to give itself extra computation at the start of a level, and show that this behavior is incentivized by training. Leveraging these insights, we extend the trained RNN to significantly larger, out-of-distribution Sokoban puzzles, demonstrating robust representations beyond the training regime. We open-source our model and code, and believe the neural network's interesting behavior makes it an excellent model organism to deepen our understanding of learned planning.

Interpretability
Model Organisms

Authors:

Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker, Adam Gleave, Adrià Garriga-Alonso

Alumni:

Maximilian Li

Date:

Jul 22, 2024

Citations:

7

Adversarial Circuit Evaluation

Circuits are supposed to accurately describe how a neural network performs a specific task, but do they really? We evaluate three circuits found in the literature (IOI, greater-than, and docstring) in an adversarial manner, considering inputs where the circuit's behavior maximally diverges from the full model. Concretely, we measure the KL divergence between the full model's output and the circuit's output, calculated through resample ablation, and we analyze the worst-performing inputs. Our results show that the circuits for the IOI and docstring tasks fail to behave similarly to the full model even on completely benign inputs from the original task, indicating that more robust circuits are needed for safety-critical applications.

Interpretability
Adversarial Robustness

Authors:

Niels uit de Bos, Adrià Garriga-Alonso

Alumni:

Niels uit de Bos

Date:

Jul 21, 2024

Citations:

1

Failures to Find Transferable Image Jailbreaks Between Vision-Language Models

The integration of new modalities into frontier AI systems offers exciting capabilities, but also increases the possibility such systems can be adversarially manipulated in undesirable ways. In this work, we focus on a popular class of vision-language models (VLMs) that generate text outputs conditioned on visual and textual inputs. We conducted a large-scale empirical study to assess the transferability of gradient-based universal image ``jailbreaks"using a diverse set of over 40 open-parameter VLMs, including 18 new VLMs that we publicly release. Overall, we find that transferable gradient-based image jailbreaks are extremely difficult to obtain. When an image jailbreak is optimized against a single VLM or against an ensemble of VLMs, the jailbreak successfully jailbreaks the attacked VLM(s), but exhibits little-to-no transfer to any other VLMs; transfer is not affected by whether the attacked and target VLMs possess matching vision backbones or language models, whether the language model underwent instruction-following and/or safety-alignment training, or many other factors. Only two settings display partially successful transfer: between identically-pretrained and identically-initialized VLMs with slightly different VLM training data, and between different training checkpoints of a single VLM. Leveraging these results, we then demonstrate that transfer can be significantly improved against a specific target VLM by attacking larger ensembles of ``highly-similar"VLMs. These results stand in stark contrast to existing evidence of universal and transferable text jailbreaks against language models and transferable adversarial attacks against image classifiers, suggesting that VLMs may be more robust to gradient-based transfer attacks.

Red-Teaming
Adversarial Robustness
Safeguards

Authors:

Rylan Schaeffer, Dan Valentine, Luke Bailey, James Chua, Cristóbal Eyzaguirre, Zane Durante, Joe Benton, Brando Miranda, Henry Sleight, John Hughes, Rajashree Agrawal, Mrinank Sharma, Scott Emmons, Sanmi Koyejo, Ethan Perez

Alumni:

Dan Valentine, James Chua

Date:

Jul 21, 2024

Citations:

20

Catastrophic Goodhart: regularizing RLHF with KL divergence does not mitigate heavy-tailed reward misspecification

When applying reinforcement learning from human feedback (RLHF), the reward is learned from data and, therefore, always has some error. It is common to mitigate this by regularizing the policy with KL divergence from a base model, with the hope that balancing reward with regularization will achieve desirable outcomes despite this reward misspecification. We show that when the reward function has light-tailed error, optimal policies under less restrictive KL penalties achieve arbitrarily high utility. However, if error is heavy-tailed, some policies obtain arbitrarily high reward despite achieving no more utility than the base model--a phenomenon we call catastrophic Goodhart. We adapt a discrete optimization method to measure the tails of reward models, finding that they are consistent with light-tailed error. However, the pervasiveness of heavy-tailed distributions in many real-world applications indicates that future sources of RL reward could have heavy-tailed error, increasing the likelihood of reward hacking even with KL regularization.

Alignment Training
Scalable Oversight

Authors:

Thomas Kwa, Drake Thomas, Adrià Garriga-Alonso

Alumni:

Thomas Kwa, Drake Thomas

Date:

Jul 19, 2024

Citations:

3

InterpBench: Semi-Synthetic Transformers for Evaluating Mechanistic Interpretability Techniques

Mechanistic interpretability methods aim to identify the algorithm a neural network implements, but it is difficult to validate such methods when the true algorithm is unknown. This work presents InterpBench, a collection of semi-synthetic yet realistic transformers with known circuits for evaluating these techniques. We train simple neural networks using a stricter version of Interchange Intervention Training (IIT) which we call Strict IIT (SIIT). Like the original, SIIT trains neural networks by aligning their internal computation with a desired high-level causal model, but it also prevents non-circuit nodes from affecting the model's output. We evaluate SIIT on sparse transformers produced by the Tracr tool and find that SIIT models maintain Tracr's original circuit while being more realistic. SIIT can also train transformers with larger circuits, like Indirect Object Identification (IOI). Finally, we use our benchmark to evaluate existing circuit discovery techniques.

Interpretability

Authors:

Rohan Gupta, Iván Arcuschin, Thomas Kwa, Adrià Garriga-Alonso

Alumni:

Rohan Gupta, Thomas Kwa

Date:

Jul 19, 2024

Citations:

5

Investigating the Indirect Object Identification circuit in Mamba

How well will current interpretability techniques generalize to future models? A relevant case study is Mamba, a recent recurrent architecture with scaling comparable to Transformers. We adapt pre-Mamba techniques to Mamba and partially reverse-engineer the circuit responsible for the Indirect Object Identification (IOI) task. Our techniques provide evidence that 1) Layer 39 is a key bottleneck, 2) Convolutions in layer 39 shift names one position forward, and 3) The name entities are stored linearly in Layer 39's SSM. Finally, we adapt an automatic circuit discovery tool, positional Edge Attribution Patching, to identify a Mamba IOI circuit. Our contributions provide initial evidence that circuit-based mechanistic interpretability tools work well for the Mamba architecture.

Interpretability

Authors:

Danielle Ensign, Adrià Garriga-Alonso

Alumni:

Danielle Ensign

Date:

Jul 19, 2024

Citations:

0

Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs

AI assistants such as ChatGPT are trained to respond to users by saying,"I am a large language model". This raises questions. Do such models know that they are LLMs and reliably act on this knowledge? Are they aware of their current circumstances, such as being deployed to the public? We refer to a model's knowledge of itself and its circumstances as situational awareness. To quantify situational awareness in LLMs, we introduce a range of behavioral tests, based on question answering and instruction following. These tests form the $\textbf{Situational Awareness Dataset (SAD)}$, a benchmark comprising 7 task categories and over 13,000 questions. The benchmark tests numerous abilities, including the capacity of LLMs to (i) recognize their own generated text, (ii) predict their own behavior, (iii) determine whether a prompt is from internal evaluation or real-world deployment, and (iv) follow instructions that depend on self-knowledge. We evaluate 16 LLMs on SAD, including both base (pretrained) and chat models. While all models perform better than chance, even the highest-scoring model (Claude 3 Opus) is far from a human baseline on certain tasks. We also observe that performance on SAD is only partially predicted by metrics of general knowledge (e.g. MMLU). Chat models, which are finetuned to serve as AI assistants, outperform their corresponding base models on SAD but not on general knowledge tasks. The purpose of SAD is to facilitate scientific understanding of situational awareness in LLMs by breaking it down into quantitative abilities. Situational awareness is important because it enhances a model's capacity for autonomous planning and action. While this has potential benefits for automation, it also introduces novel risks related to AI safety and control. Code and latest results available at https://situational-awareness-dataset.org .

Dangerous Capability Evals
Scheming & Deception
Monitoring

Authors:

Rudolf Laine, Bilal Chughtai, Jan Betley, Kaivalya Hariharan, Jeremy Scheurer, Mikita Balesni, Marius Hobbhahn, Alexander Meinke, Owain Evans

Alumni:

Alexander Meinke, Rudolf Laine

Date:

Jul 5, 2024

Citations:

36

Future Events as Backdoor Triggers: Investigating Temporal Vulnerabilities in LLMs

Backdoors are hidden behaviors that are only triggered once an AI system has been deployed. Bad actors looking to create successful backdoors must design them to avoid activation during training and evaluation. Since data used in these stages often only contains information about events that have already occurred, a component of a simple backdoor trigger could be a model recognizing data that is in the future relative to when it was trained. Through prompting experiments and by probing internal activations, we show that current large language models (LLMs) can distinguish past from future events, with probes on model activations achieving 90% accuracy. We train models with backdoors triggered by a temporal distributional shift; they activate when the model is exposed to news headlines beyond their training cut-off dates. Fine-tuning on helpful, harmless and honest (HHH) data does not work well for removing simpler backdoor triggers but is effective on our backdoored models, although this distinction is smaller for the larger-scale model we tested. We also find that an activation-steering vector representing a model's internal representation of the date influences the rate of backdoor activation. We take these results as initial evidence that, at least for models at the modest scale we test, standard safety measures are enough to remove these backdoors.

Dangerous Capability Evals
Scheming & Deception
Safeguards

Authors:

Sara Price, Arjun Panickssery, Sam Bowman, Asa Cooper Stickland

Alumni:

Arjun Panickssery, Sara Price

Date:

Jul 4, 2024

Citations:

12

Interpreting Attention Layer Outputs with Sparse Autoencoders

Decomposing model activations into interpretable components is a key open problem in mechanistic interpretability. Sparse autoencoders (SAEs) are a popular method for decomposing the internal activations of trained transformers into sparse, interpretable features, and have been applied to MLP layers and the residual stream. In this work we train SAEs on attention layer outputs and show that also here SAEs find a sparse, interpretable decomposition. We demonstrate this on transformers from several model families and up to 2B parameters. We perform a qualitative study of the features computed by attention layers, and find multiple families: long-range context, short-range context and induction features. We qualitatively study the role of every head in GPT-2 Small, and estimate that at least 90% of the heads are polysemantic, i.e. have multiple unrelated roles. Further, we show that Sparse Autoencoders are a useful tool that enable researchers to explain model behavior in greater detail than prior work. For example, we explore the mystery of why models have so many seemingly redundant induction heads, use SAEs to motivate the hypothesis that some are long-prefix whereas others are short-prefix, and confirm this with more rigorous analysis. We use our SAEs to analyze the computation performed by the Indirect Object Identification circuit (Wang et al.), validating that the SAEs find causally meaningful intermediate variables, and deepening our understanding of the semantics of the circuit. We open-source the trained SAEs and a tool for exploring arbitrary prompts through the lens of Attention Output SAEs.

Interpretability

Authors:

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, Neel Nanda

Alumni:

Connor Kissane, Joseph Isaac Bloom, Robert Krzyzanowski

Date:

Jun 25, 2024

Citations:

34

Compact Proofs of Model Performance via Mechanistic Interpretability

We propose using mechanistic interpretability -- techniques for reverse engineering model weights into human-interpretable algorithms -- to derive and compactly prove formal guarantees on model performance. We prototype this approach by formally proving accuracy lower bounds for a small transformer trained on Max-of-K, validating proof transferability across 151 random seeds and four values of K. We create 102 different computer-assisted proof strategies and assess their length and tightness of bound on each of our models. Using quantitative metrics, we find that shorter proofs seem to require and provide more mechanistic understanding. Moreover, we find that more faithful mechanistic understanding leads to tighter performance bounds. We confirm these connections by qualitatively examining a subset of our proofs. Finally, we identify compounding structureless errors as a key challenge for using mechanistic interpretability to generate compact proofs on model performance.

Interpretability
Scalable Oversight

Authors:

Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufiane Noubir, Lawrence Chan

Alumni:

Thomas Kwa

Date:

Jun 17, 2024

Citations:

9

Transcoders Find Interpretable LLM Feature Circuits

A key goal in mechanistic interpretability is circuit analysis: finding sparse subgraphs of models corresponding to specific behaviors or capabilities. However, MLP sublayers make fine-grained circuit analysis on transformer-based language models difficult. In particular, interpretable features -- such as those found by sparse autoencoders (SAEs) -- are typically linear combinations of extremely many neurons, each with its own nonlinearity to account for. Circuit analysis in this setting thus either yields intractably large circuits or fails to disentangle local and global behavior. To address this we explore transcoders, which seek to faithfully approximate a densely activating MLP layer with a wider, sparsely-activating MLP layer. We introduce a novel method for using transcoders to perform weights-based circuit analysis through MLP sublayers. The resulting circuits neatly factorize into input-dependent and input-invariant terms. We then successfully train transcoders on language models with 120M, 410M, and 1.4B parameters, and find them to perform at least on par with SAEs in terms of sparsity, faithfulness, and human-interpretability. Finally, we apply transcoders to reverse-engineer unknown circuits in the model, and we obtain novel insights regarding the"greater-than circuit"in GPT2-small. Our results suggest that transcoders can prove effective in decomposing model computations involving MLPs into interpretable circuits. Code is available at https://github.com/jacobdunefsky/transcoder_circuits/.

Interpretability

Authors:

Jacob Dunefsky, Philippe Chlenski, Neel Nanda

Alumni:

Jacob Dunefsky, Philippe Chlenski

Date:

Jun 17, 2024

Citations:

78

Refusal in Language Models Is Mediated by a Single Direction

Conversational large language models are fine-tuned for both instruction-following and safety, resulting in models that obey benign requests but refuse harmful ones. While this refusal behavior is widespread across chat models, its underlying mechanisms remain poorly understood. In this work, we show that refusal is mediated by a one-dimensional subspace, across 13 popular open-source chat models up to 72B parameters in size. Specifically, for each model, we find a single direction such that erasing this direction from the model's residual stream activations prevents it from refusing harmful instructions, while adding this direction elicits refusal on even harmless instructions. Leveraging this insight, we propose a novel white-box jailbreak method that surgically disables refusal with minimal effect on other capabilities. Finally, we mechanistically analyze how adversarial suffixes suppress propagation of the refusal-mediating direction. Our findings underscore the brittleness of current safety fine-tuning methods. More broadly, our work showcases how an understanding of model internals can be leveraged to develop practical methods for controlling model behavior.

Interpretability
Safeguards
Red-Teaming

Authors:

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, Neel Nanda

Alumni:

Aaquib Syed, Andy Arditi

Date:

Jun 17, 2024

Citations:

389

AI Sandbagging: Language Models can Strategically Underperform on Evaluations

Trustworthy capability evaluations are crucial for ensuring the safety of AI systems, and are becoming a key component of AI regulation. However, the developers of an AI system, or the AI system itself, may have incentives for evaluations to understate the AI's actual capability. These conflicting interests lead to the problem of sandbagging, which we define as strategic underperformance on an evaluation. In this paper we assess sandbagging capabilities in contemporary language models (LMs). We prompt frontier LMs, like GPT-4 and Claude 3 Opus, to selectively underperform on dangerous capability evaluations, while maintaining performance on general (harmless) capability evaluations. Moreover, we find that models can be fine-tuned, on a synthetic dataset, to hide specific capabilities unless given a password. This behaviour generalizes to high-quality, held-out benchmarks such as WMDP. In addition, we show that both frontier and smaller models can be prompted or password-locked to target specific scores on a capability evaluation. We have mediocre success in password-locking a model to mimic the answers a weaker model would give. Overall, our results suggest that capability evaluations are vulnerable to sandbagging. This vulnerability decreases the trustworthiness of evaluations, and thereby undermines important safety decisions regarding the development and deployment of advanced AI systems.

Dangerous Capability Evals
Scheming & Deception
Monitoring

Authors:

Teun van der Weij, Felix Hofstätter, Ollie Jaffe, Samuel F. Brown, Francis Rhys Ward

Alumni:

Felix Hofstätter, Teun van der Weij

Date:

Jun 11, 2024

Citations:

55

Frequently asked questions

What is the MATS Program?
Who are the MATS Mentors?
What are the key dates of the MATS Program?
Who is eligible to apply?
How does the application and mentor selection process work?