Gradient Routing: Masking Gradients to Localize Computation in Neural Networks

MATS Fellow:

Joseph Miller, Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul

Authors:

Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul, Joseph Miller, Alexander Matt Turner

Citations

14 Citations

Abstract:

Neural networks are trained primarily based on their inputs and outputs, without regard for their internal mechanisms. These neglected mechanisms determine properties that are critical for safety, like (i) transparency; (ii) the absence of sensitive information or harmful capabilities; and (iii) reliable generalization of goals beyond the training distribution. To address this shortcoming, we introduce gradient routing, a training method that isolates capabilities to specific subregions of a neural network. Gradient routing applies data-dependent, weighted masks to gradients during backpropagation. These masks are supplied by the user in order to configure which parameters are updated by which data points. We show that gradient routing can be used to (1) learn representations which are partitioned in an interpretable way; (2) enable robust unlearning via ablation of a pre-specified network subregion; and (3) achieve scalable oversight of a reinforcement learner by localizing modules responsible for different behaviors. Throughout, we find that gradient routing localizes capabilities even when applied to a limited, ad-hoc subset of the data. We conclude that the approach holds promise for challenging, real-world applications where quality data are scarce.

Recent research

What Happens When Superhuman AIs Compete for Control?

Authors:

Steven Veld

Date:

January 11, 2026

Citations:

0

AI Futures Model: Timelines & Takeoff

Authors:

Brendan Halstead, Alex Kastner

Date:

December 30, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?