Planning in a recurrent neural network that plays Sokoban

MATS Fellow:

Maximilian Li

Authors:

Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker, Adam Gleave, Adrià Garriga-Alonso

Citations

7 Citations

Abstract:

Planning is essential for solving complex tasks, yet the internal mechanisms underlying planning in neural networks remain poorly understood. Building on prior work, we analyze a recurrent neural network (RNN) trained on Sokoban, a challenging puzzle requiring sequential, irreversible decisions. We find that the RNN has a causal plan representation which predicts its future actions about 50 steps in advance. The quality and length of the represented plan increases over the first few steps. We uncover a surprising behavior: the RNN"paces"in cycles to give itself extra computation at the start of a level, and show that this behavior is incentivized by training. Leveraging these insights, we extend the trained RNN to significantly larger, out-of-distribution Sokoban puzzles, demonstrating robust representations beyond the training regime. We open-source our model and code, and believe the neural network's interesting behavior makes it an excellent model organism to deepen our understanding of learned planning.

Recent research

What Happens When Superhuman AIs Compete for Control?

Authors:

Steven Veld

Date:

January 11, 2026

Citations:

0

AI Futures Model: Timelines & Takeoff

Authors:

Brendan Halstead, Alex Kastner

Date:

December 30, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?