Training Neural Networks for Modularity aids Interpretability

MATS Alumnus

Satvik Golechha

Collabortators

Satvik Golechha, Dylan Cope, Nandi Schoots

Citations

1 Citations

Abstract

An approach to improve network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We find pretrained models to be highly unclusterable and thus train models to be more modular using an ``enmeshment loss''function that encourages the formation of non-interacting clusters. Using automated interpretability measures, we show that our method finds clusters that learn different, disjoint, and smaller circuits for CIFAR-10 labels. Our approach provides a promising direction for making neural networks easier to interpret.

Recent research

Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs

Authors:

Jorio Cocola, Dylan Feng

Date:

December 10, 2025

Citations:

0

AI agents find $4.6M in blockchain smart contract exploits

Authors:

Fellow: Winnie Xiao

Date:

December 1, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?