MATS Alumnus
Wilson Wu, Louis Jaburi, Jacob Drori
Collabortators
Wilson Wu, Louis Jaburi, Jacob Drori, Jason Gross
Citations
Abstract
A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024). Notably, these models approximate equivariance in each input argument. We verify that our explanation applies to a large fraction of networks trained on this task by translating it into a compact proof of model performance, a quantitative evaluation of the extent to which we faithfully and concisely explain model internals. In the main text, we focus on the symmetric group S5. For models trained on this group, our explanation yields a guarantee of model accuracy that runs 3x faster than brute force and gives a>=95% accuracy bound for 45% of the models we trained. We were unable to obtain nontrivial non-vacuous accuracy bounds using only explanations from previous works.
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
Authors:
Jorio Cocola, Dylan Feng
Date:
December 10, 2025
Citations:
0
AI agents find $4.6M in blockchain smart contract exploits
Authors:
Fellow: Winnie Xiao
Date:
December 1, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.