MATS Alumnus
Jiaxin Wen
Collabortators
Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R. Bowman, He He, Shi Feng
Citations
Abstract
Language models (LMs) can produce errors that are hard to detect for humans, especially when the task is complex. RLHF, the most popular post-training method, may exacerbate this problem: to achieve higher rewards, LMs might get better at convincing humans that they are right even when they are wrong. We study this phenomenon under a standard RLHF pipeline, calling it"U-SOPHISTRY"since it is Unintended by model developers. Specifically, we ask time-constrained (e.g., 3-10 minutes) human subjects to evaluate the correctness of model outputs and calculate humans' accuracy against gold labels. On a question-answering task (QuALITY) and programming task (APPS), RLHF makes LMs better at convincing our subjects but not at completing the task correctly. RLHF also makes the model harder to evaluate: our subjects' false positive rate increases by 24.1% on QuALITY and 18.3% on APPS. Finally, we show that probing, a state-of-the-art approach for detecting Intended Sophistry (e.g. backdoored LMs), does not generalize to U-SOPHISTRY. Our results highlight an important failure mode of RLHF and call for more research in assisting humans to align them.
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
Authors:
Jorio Cocola, Dylan Feng
Date:
December 10, 2025
Citations:
0
AI agents find $4.6M in blockchain smart contract exploits
Authors:
Fellow: Winnie Xiao
Date:
December 1, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.