This page highlights research projects that have emerged from the MATS program, showcasing MATS fellows’ contributions to AI alignment, transparency, and security.

Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
Authors:
Dmitrii Kharlapenko, Stepan Shabalin, Fazl Barez, Arthur Conmy, Neel Nanda
Alumni:
Dmitrii Kharlapenko, Stepan Shabalin
Date:
Apr 18, 2025
Citations:
3
Ctrl-Z: Controlling AI Agents via Resampling
Control evaluations measure whether monitoring and security protocols for AI systems prevent intentionally subversive AI models from causing harm. Our work presents the first control evaluation performed in an agent environment. We construct BashBench, a dataset of 257 challenging multi-step system administration tasks, and evaluate whether various safety measures can prevent an adversarially constructed AI agent from covertly downloading and executing malicious code in this environment. This multi-step setting introduces new attack and defense dynamics, which we investigate in order to design novel control protocols that prevent safety failures without hindering the ability of non-malicious agents to perform useful work. We introduce a class of control protocols called resample protocols that dynamically take additional samples of certain actions. We find these protocols significantly improve on existing techniques by selectively blocking the AI agent from executing suspicious code and incriminating the agent by generating additional examples of dangerous behavior. We measure the tradeoff between attack prevention and usefulness; our best protocol combines resampling with analysis of previous steps, reducing the success rate of attacks from 58% to 7% at a 5% cost to the performance of a non-malicious agent.
Authors:
Aryan Bhatt, Cody Rushing, Adam Kaufman, Tyler Tracy, Vasil Georgiev, David Matolcsi, Akbir Khan, Buck Shlegeris
Alumni:
Vasil Georgiev, Cody Rushing, Adam Kaufman, Tyler Tracy
Date:
Apr 14, 2025
Citations:
9
The Partially Observable Off-Switch Game
A wide variety of goals could cause an AI to disable its off switch because ``you can’t fetch the coffee if you’re dead.'' Prior theoretical work on this shutdown problem assumes that humans know everything that AIs do. In practice, however, humans have only limited information. Moreover, in many of the settings where the shutdown problem is most concerning, AIs might have vast amounts of private information. To capture these differences in knowledge, we introduce the Partially Observable Off-Switch Game (POSG), a game-theoretic model of the shutdown problem with asymmetric information. Unlike in the fully observable case, we find that in optimal play, even AI agents assisting perfectly rational humans sometimes avoid shutdown. As expected, increasing the amount of communication or information available always increases (or leaves unchanged) the agents' expected common payoff. But counterintuitively, introducing bounded communication can make the AI defer to the human less in optimal play even though communication mitigates information asymmetry. Thus, designing safe artificial agents in the presence of asymmetric information requires careful consideration of the tradeoffs between maximizing payoffs (potentially myopically) and maintaining AIs’ incentives to defer to humans.
Authors:
Andrew Garber, Rohan Subramani, Linus Luu, Mark Bedaywi, Stuart Russell, Scott Emmons
Alumni:
Linus Luu
Date:
Apr 11, 2025
Citations:
4
Among Us: A Sandbox for Measuring and Detecting Agentic Deception
Prior studies on deception in language-based AI agents typically assess whether the agent produces a false statement about a topic, or makes a binary choice prompted by a goal, rather than allowing open-ended deceptive behavior to emerge in pursuit of a longer-term goal. To fix this, we introduce $\textit{Among Us}$, a sandbox social deception game where LLM-agents exhibit long-term, open-ended deception as a consequence of the game objectives. While most benchmarks saturate quickly, $\textit{Among Us}$ can be expected to last much longer, because it is a multi-player game far from equilibrium. Using the sandbox, we evaluate $18$ proprietary and open-weight LLMs and uncover a general trend: models trained with RL are comparatively much better at producing deception than detecting it. We evaluate the effectiveness of methods to detect lying and deception: logistic regression on the activations and sparse autoencoders (SAEs). We find that probes trained on a dataset of ``pretend you're a dishonest model: $\dots$'' generalize extremely well out-of-distribution, consistently obtaining AUROCs over 95% even when evaluated just on the deceptive statement, without the chain of thought. We also find two SAE features that work well at deception detection but are unable to steer the model to lie less. We hope our open-sourced sandbox, game logs, and probes serve to anticipate and mitigate deceptive behavior and capabilities in language-based agents.
Authors:
Satvik Golechha, Adrià Garriga-Alonso
Alumni:
Satvik Golechha
Date:
Apr 5, 2025
Citations:
6
Overcoming Sparsity Artifacts in Crosscoders to Interpret Chat-Tuning
Model diffing is the study of how fine-tuning changes a model's representations and internal algorithms. Many behaviors of interest are introduced during fine-tuning, and model diffing offers a promising lens to interpret such behaviors. Crosscoders are a recent model diffing method that learns a shared dictionary of interpretable concepts represented as latent directions in both the base and fine-tuned models, allowing us to track how concepts shift or emerge during fine-tuning. Notably, prior work has observed concepts with no direction in the base model, and it was hypothesized that these model-specific latents were concepts introduced during fine-tuning. However, we identify two issues which stem from the crosscoders L1 training loss that can misattribute concepts as unique to the fine-tuned model, when they really exist in both models. We develop Latent Scaling to flag these issues by more accurately measuring each latent's presence across models. In experiments comparing Gemma 2 2B base and chat models, we observe that the standard crosscoder suffers heavily from these issues. Building on these insights, we train a crosscoder with BatchTopK loss and show that it substantially mitigates these issues, finding more genuinely chat-specific and highly interpretable concepts. We recommend practitioners adopt similar techniques. Using the BatchTopK crosscoder, we successfully identify a set of chat-specific latents that are both interpretable and causally effective, representing concepts such as $\textit{false information}$ and $\textit{personal question}$, along with multiple refusal-related latents that show nuanced preferences for different refusal triggers. Overall, our work advances best practices for the crosscoder-based methodology for model diffing and demonstrates that it can provide concrete insights into how chat-tuning modifies model behavior.
Authors:
Julian Minder, Clément Dumas, Caden Juang, Bilal Chugtai, Neel Nanda
Alumni:
Caden Juang, Julian Minder, Clément Dumas, Bilal Chughtai
Date:
Apr 3, 2025
Citations:
4
Identifying Sparsely Active Circuits Through Local Loss Landscape Decomposition
Much of mechanistic interpretability has focused on understanding the activation spaces of large neural networks. However, activation space-based approaches reveal little about the underlying circuitry used to compute features. To better understand the circuits employed by models, we introduce a new decomposition method called Local Loss Landscape Decomposition (L3D). L3D identifies a set of low-rank subnetworks: directions in parameter space of which a subset can reconstruct the gradient of the loss between any sample's output and a reference output vector. We design a series of progressively more challenging toy models with well-defined subnetworks and show that L3D can nearly perfectly recover the associated subnetworks. Additionally, we investigate the extent to which perturbing the model in the direction of a given subnetwork affects only the relevant subset of samples. Finally, we apply L3D to a real-world transformer model and a convolutional neural network, demonstrating its potential to identify interpretable and relevant circuits in parameter space.
Authors:
Brianna Chrisman, Lucius Bushnaq, Lee Sharkey
Alumni:
Brianna Chrisman
Date:
Mar 31, 2025
Citations:
2
A Benchmark for Scalable Oversight Protocols
As AI agents surpass human capabilities, scalable oversight -- the problem of effectively supplying human feedback to potentially superhuman AI models -- becomes increasingly critical to ensure alignment. While numerous scalable oversight protocols have been proposed, they lack a systematic empirical framework to evaluate and compare them. While recent works have tried to empirically study scalable oversight protocols -- particularly Debate -- we argue that the experiments they conduct are not generalizable to other protocols. We introduce the scalable oversight benchmark, a principled framework for evaluating human feedback mechanisms based on our agent score difference (ASD) metric, a measure of how effectively a mechanism advantages truth-telling over deception. We supply a Python package to facilitate rapid and competitive evaluation of scalable oversight protocols on our benchmark, and conduct a demonstrative experiment benchmarking Debate.
Authors:
Abhimanyu Pallavi Sudhir, Jackson Kaunismaa, Arjun Panickssery
Alumni:
Jackson Kaunismaa, Arjun Panickssery
Date:
Mar 31, 2025
Citations:
1
Too Late to Recall: The Two-Hop Problem in Multimodal Knowledge Retrieval
LLaVA-style Vision-Language Models (VLMs) have demonstrated impressive capabilities, but struggle with factual recall tasks compared to their underlying language model (LM). While previous work attributes this to insufficient computational depth after visual processing, we provide an alternative explanation: the distributed representations of visual information across visual tokens in early layers bypasses the factual recall mechanism that resides in the early-layer MLPs of the LM backbone. The performance gap therefore stems from the architectural design of VLMs, rather than insufficient computational capacity. Using linear probes, we show that dedicated linear representations of visual information only emerge in the middle-to-late layers of VLMs. As a result, factual recall in VLMs becomes a “two-hop” challenge, where factual recall precedes visual processing, but the visual processing finishes too late in the model. Through comparative analysis, we demonstrate that successful factual recall depends on the speed of the first processing “hop.” To further support our hypothesis, we patch early-layer MLP outputs from the LM backbone into the corresponding VLM layers, significantly improving factual recall performance. This suggests that the absence of properly aligned token embeddings in early layers is a key factor in factual recall degradation. Finally, we introduce a benchmark to systematically evaluate factual recall accuracy and knowledge hallucination in multimodal settings. Our findings highlight a fundamental architectural limitation in current VLMs and pave the way for designing models that better integrate visual and linguistic information for reliable factual reasoning.
Authors:
Constantin Venhoff, Ashkan Khakzar, Sonia Joseph, Philip Torr, Neel Nanda
Alumni:
Constantin Venhoff
Date:
Mar 30, 2025
Citations:
0
Learning Multi-Level Features with Matryoshka Sparse Autoencoders
Sparse autoencoders (SAEs) have emerged as a powerful tool for interpreting neural networks by extracting the concepts represented in their activations. However, choosing the size of the SAE dictionary (i.e. number of learned concepts) creates a tension: as dictionary size increases to capture more relevant concepts, sparsity incentivizes features to be split or absorbed into more specific features, leaving high-level features missing or warped. We introduce Matryoshka SAEs, a novel variant that addresses these issues by simultaneously training multiple nested dictionaries of increasing size, forcing the smaller dictionaries to independently reconstruct the inputs without using the larger dictionaries. This organizes features hierarchically - the smaller dictionaries learn general concepts, while the larger dictionaries learn more specific concepts, without incentive to absorb the high-level features. We train Matryoshka SAEs on Gemma-2-2B and TinyStories and find superior performance on sparse probing and targeted concept erasure tasks, more disentangled concept representations, and reduced feature absorption. While there is a minor tradeoff with reconstruction performance, we believe Matryoshka SAEs are a superior alternative for practical tasks, as they enable training arbitrarily large SAEs while retaining interpretable features at different levels of abstraction.
Authors:
Bart Bussmann, Noa Nabeshima, Adam Karvonen, Neel Nanda
Alumni:
Bart Bussmann, Adam Karvonen
Date:
Mar 21, 2025
Citations:
43
Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
Authors:
Samuel Marks, Johannes Treutlein, Trenton Bricken, Jack Lindsey, Jonathan Marcus, Siddharth Mishra-Sharma, Daniel Ziegler, Emmanuel Ameisen, Joshua Batson, Tim Belonax, Samuel R. Bowman, Shan Carter, Brian Chen, Hoagy Cunningham, Carson Denison, Florian Dietz, Satvik Golechha, Akbir Khan, Jan Kirchner, Jan Leike, Austin Meek, Kei Nishimura-Gasparian, Euan Ong, Christopher Olah, Adam Pearce, Fabien Roger, Jeanne Salle, Andy Shih, Meg Tong, Drake Thomas, Kelley Rivoire, Adam Jermyn, Monte MacDiarmid, Tom Henighan, Evan Hubinger
Alumni:
Florian Dietz, Kei Nishimura-Gasparian, Jeanne Salle
Date:
Mar 14, 2025
Citations:
22
SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability
Sparse autoencoders (SAEs) are a popular technique for interpreting language model activations, and there is extensive recent work on improving SAE effectiveness. However, most prior work evaluates progress using unsupervised proxy metrics with unclear practical relevance. We introduce SAEBench, a comprehensive evaluation suite that measures SAE performance across eight diverse metrics, spanning interpretability, feature disentanglement and practical applications like unlearning. To enable systematic comparison, we open-source a suite of over 200 SAEs across eight recently proposed SAE architectures and training algorithms. Our evaluation reveals that gains on proxy metrics do not reliably translate to better practical performance. For instance, while Matryoshka SAEs slightly underperform on existing proxy metrics, they substantially outperform other architectures on feature disentanglement metrics; moreover, this advantage grows with SAE scale. By providing a standardized framework for measuring progress in SAE development, SAEBench enables researchers to study scaling trends and make nuanced comparisons between different SAE architectures and training methodologies. Our interactive interface enables researchers to flexibly visualize relationships between metrics across hundreds of open-source SAEs at: www.neuronpedia.org/sae-bench
Authors:
Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau, Eoin Farrell, Callum McDougall, Kola Ayonrinde, Demian Till, Matthew Wearden, Arthur Conmy, Samuel Marks, Neel Nanda
Alumni:
Adam Karvonen, Can Rager, David Chanin
Date:
Mar 12, 2025
Citations:
49
Chain-of-Thought Reasoning In The Wild Is Not Always Faithful
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful when models face an explicit bias in their prompts, i.e., the CoT can give an incorrect picture of how models arrive at conclusions. We go further and show that unfaithful CoT can also occur on realistic prompts with no artificial bias. We find that when separately presented with the questions"Is X bigger than Y?"and"Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify systematically answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We show preliminary evidence that this is due to models' implicit biases towards Yes or No, thus labeling this unfaithfulness as Implicit Post-Hoc Rationalization. Our results reveal that several production models exhibit surprisingly high rates of post-hoc rationalization in our settings: GPT-4o-mini (13%) and Haiku 3.5 (7%). While frontier models are more faithful, especially thinking ones, none are entirely faithful: Gemini 2.5 Flash (2.17%), ChatGPT-4o (0.49%), DeepSeek R1 (0.37%), Gemini 2.5 Pro (0.14%), and Sonnet 3.7 with thinking (0.04%). We also investigate Unfaithful Illogical Shortcuts, where models use subtly illogical reasoning to try to make a speculative answer to hard maths problems seem rigorously proven. Our findings raise challenges for strategies for detecting undesired behavior in LLMs via the chain of thought.
Authors:
Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, Arthur Conmy
Alumni:
Iván Arcuschin Moreno, Kajetan (Jett) Janiak
Date:
Mar 11, 2025
Citations:
67
Higher-Order Belief in Incomplete Information MAIDs
Multi-agent influence diagrams (MAIDs) are probabilistic graphical models which represent strategic interactions between agents. MAIDs are equivalent to extensive form games (EFGs) but have a more compact and informative structure. However, MAIDs cannot, in general, represent settings of incomplete information -- wherein agents have different beliefs about the game being played, and different beliefs about each-other's beliefs. In this paper, we introduce incomplete information MAIDs (II-MAIDs). We define both infinite and finite-depth II-MAIDs and prove an equivalence relation to EFGs with incomplete information and no common prior over types. We prove that II-MAIDs inherit classical equilibria concepts via this equivalence, but note that these solution concepts are often unrealistic in the setting with no common prior because they violate common knowledge of rationality. We define a more realistic solution concept based on recursive best-response. Throughout, we describe an example with a hypothetical AI agent undergoing evaluation to illustrate the applicability of II-MAIDs.
Authors:
Jack Foxabbott, Rohan Subramani, Francis Rhys Ward
Alumni:
Rohan Subramani
Date:
Mar 8, 2025
Citations:
0
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
Authors:
Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martín Soto, Nathan Labenz, Owain Evans
Alumni:
Fellow: Daniel Tan
Date:
Feb 24, 2025
Citations:
97
Are Sparse Autoencoders Useful? A Case Study in Sparse Probing
Sparse autoencoders (SAEs) are a popular method for interpreting concepts represented in large language model (LLM) activations. However, there is a lack of evidence regarding the validity of their interpretations due to the lack of a ground truth for the concepts used by an LLM, and a growing number of works have presented problems with current SAEs. One alternative source of evidence would be demonstrating that SAEs improve performance on downstream tasks beyond existing baselines. We test this by applying SAEs to the real-world task of LLM activation probing in four regimes: data scarcity, class imbalance, label noise, and covariate shift. Due to the difficulty of detecting concepts in these challenging settings, we hypothesize that SAEs' basis of interpretable, concept-level latents should provide a useful inductive bias. However, although SAEs occasionally perform better than baselines on individual datasets, we are unable to design ensemble methods combining SAEs with baselines that consistently outperform ensemble methods solely using baselines. Additionally, although SAEs initially appear promising for identifying spurious correlations, detecting poor dataset quality, and training multi-token probes, we are able to achieve similar results with simple non-SAE baselines as well. Though we cannot discount SAEs' utility on other tasks, our findings highlight the shortcomings of current SAEs and the need to rigorously evaluate interpretability methods on downstream tasks with strong baselines.
Authors:
Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, Neel Nanda
Alumni:
Joshua Engels
Date:
Feb 23, 2025
Citations:
39
Forecasting Frontier Language Model Agent Capabilities
As Language Models (LMs) increasingly operate as autonomous agents, accurately forecasting their capabilities becomes crucial for societal preparedness. We evaluate six forecasting methods that predict downstream capabilities of LM agents. We use"one-step"approaches that predict benchmark scores from input metrics like compute or model release date directly or"two-step"approaches that first predict an intermediate metric like the principal component of cross-benchmark performance (PC-1) and human-evaluated competitive Elo ratings. We evaluate our forecasting methods by backtesting them on a dataset of 38 LMs from the OpenLLM 2 leaderboard. We then use the validated two-step approach (Release Date$\to$Elo$\to$Benchmark) to predict LM agent performance for frontier models on three benchmarks: SWE-Bench Verified (software development), Cybench (cybersecurity assessment), and RE-Bench (ML research engineering). Our forecast predicts that by the beginning of 2026, non-specialized LM agents with low capability elicitation will reach a success rate of 54% on SWE-Bench Verified, while state-of-the-art LM agents will reach an 87% success rate. Our approach does not account for recent advances in inference-compute scaling and might thus be too conservative.
Authors:
Govind Pimpale, Axel Højmark, Jérémy Scheurer, Marius Hobbhahn
Alumni:
Govind Pimpale, Axel Højmark
Date:
Feb 21, 2025
Citations:
2
Sparse Autoencoders Do Not Find Canonical Units of Analysis
A common goal of mechanistic interpretability is to decompose the activations of neural networks into features: interpretable properties of the input computed by the model. Sparse autoencoders (SAEs) are a popular method for finding these features in LLMs, and it has been postulated that they can be used to find a \textit{canonical} set of units: a unique and complete list of atomic features. We cast doubt on this belief using two novel techniques: SAE stitching to show they are incomplete, and meta-SAEs to show they are not atomic. SAE stitching involves inserting or swapping latents from a larger SAE into a smaller one. Latents from the larger SAE can be divided into two categories: \emph{novel latents}, which improve performance when added to the smaller SAE, indicating they capture novel information, and \emph{reconstruction latents}, which can replace corresponding latents in the smaller SAE that have similar behavior. The existence of novel features indicates incompleteness of smaller SAEs. Using meta-SAEs -- SAEs trained on the decoder matrix of another SAE -- we find that latents in SAEs often decompose into combinations of latents from a smaller SAE, showing that larger SAE latents are not atomic. The resulting decompositions are often interpretable; e.g. a latent representing ``Einstein'' decomposes into ``scientist'', ``Germany'', and ``famous person''. Even if SAEs do not find canonical units of analysis, they may still be useful tools. We suggest that future research should either pursue different approaches for identifying such units, or pragmatically choose the SAE size suited to their task. We provide an interactive dashboard to explore meta-SAEs: https://metasaes.streamlit.app/
Authors:
Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al Moubayed, Lee Sharkey, Neel Nanda
Alumni:
Patrick Leask, Bart Bussmann, Michael Pearce
Date:
Feb 7, 2025
Citations:
34
Modular Training of Neural Networks aids Interpretability
An approach to improve neural network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We define a measure for clusterability and show that pre-trained models form highly enmeshed clusters via spectral graph clustering. We thus train models to be more modular using a"clusterability loss"function that encourages the formation of non-interacting clusters. We then investigate the emerging properties of these highly clustered models. We find our trained clustered models do not exhibit more task specialization, but do form smaller circuits. We investigate CNNs trained on MNIST and CIFAR, small transformers trained on modular addition, and GPT-2 and Pythia on the Wiki dataset, and Gemma on a Chemistry dataset. This investigation shows what to expect from clustered models.
Authors:
Satvik Golechha, Maheep Chaudhary, Joan Velja, Alessandro Abate, Nandi Schoots
Alumni:
Satvik Golechha
Date:
Feb 4, 2025
Citations:
1
Constrained belief updates explain geometric structures in transformer representations
What computational structures emerge in transformers trained on next-token prediction? In this work, we provide evidence that transformers implement constrained Bayesian belief updating -- a parallelized version of partial Bayesian inference shaped by architectural constraints. We integrate the model-agnostic theory of optimal prediction with mechanistic interpretability to analyze transformers trained on a tractable family of hidden Markov models that generate rich geometric patterns in neural activations. Our primary analysis focuses on single-layer transformers, revealing how the first attention layer implements these constrained updates, with extensions to multi-layer architectures demonstrating how subsequent layers refine these representations. We find that attention carries out an algorithm with a natural interpretation in the probability simplex, and create representations with distinctive geometric structure. We show how both the algorithmic behavior and the underlying geometry of these representations can be theoretically predicted in detail -- including the attention pattern, OV-vectors, and embedding vectors -- by modifying the equations for optimal future token predictions to account for the architectural constraints of attention. Our approach provides a principled lens on how architectural constraints shape the implementation of optimal prediction, revealing why transformers develop specific intermediate geometric structures.
Authors:
Mateusz Piotrowski, Paul M. Riechers, Daniel Filan, Adam S. Shai
Alumni:
Mateusz Piotrowski
Date:
Feb 4, 2025
Citations:
5
Open Problems in Mechanistic Interpretability
Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing.
Authors:
Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, Tom McGrath
Alumni:
Joseph Miller
Date:
Jan 27, 2025
Citations:
77
The MATS Program is a 12-week research fellowship designed to train and support emerging researchers working on AI alignment, interpretability, governance, and safety. Fellows collaborate with world-class mentors, receive dedicated research management support, and join a vibrant community in Berkeley focused on advancing safe and reliable AI. The program provides the structure, resources, and mentorship needed to produce impactful research and launch long-term careers in AI safety.
MATS mentors are leading researchers from a broad range of AI safety, alignment, governance, interpretability, and security domains. They include academics, industry researchers, and independent experts who guide scholars through research projects, provide feedback, and help shape each scholar’s growth as a researcher. The mentors represent expertise in areas such as:
Key dates
Application:
The main program will then run from early June to late August, with the extension phase for accepted fellows beginning in September.
MATS accepts applicants from diverse academic and professional backgrounds ranging from machine learning, mathematics, and computer science to policy, economics, physics, and cognitive science. The primary requirements are strong motivation to contribute to AI safety and evidence of technical aptitude or research potential. Prior AI safety experience is helpful but not required.
Applicants submit a general application, applying to various tracks (technical governance, empirical, policy & strategy, theory, and compute governance) and streams within those tracks.
After a centralized review period, applicants who are advanced will then undergo additional evaluations depending on the preferences of the streams they've applied to before doing final interviews and receiving offers.