MATS Alumnus
Marvin Li, Andy Arditi
Collabortators
Miles Turpin, Andy Arditi, Marvin Li, Joe Benton, Julian Michael
Citations
Abstract
Language models trained with reinforcement learning (RL) can engage in reward hacking--the exploitation of unintended strategies for high reward--without revealing this behavior in their chain-of-thought reasoning. This makes the detection of reward hacking difficult, posing risks for high-stakes applications. We propose verbalization fine-tuning (VFT), a pre-RL fine-tuning intervention that trains models to explicitly acknowledge when they are influenced by prompt cues--hints which point to incorrect answers (e.g.,"a Stanford professor thinks the answer is A"). To evaluate VFT, we subsequently train models with RL on environments where held-out prompt cues signal which incorrect answers will receive high reward, incentivizing models to exploit these cues instead of reasoning correctly. We measure how often models exploit these cues without verbalizing it. After RL, only 6% of the VFT-trained model's responses consist of undetected reward hacks. In comparison, when we perform RL without VFT, the rate of undetected reward hacks goes up to 88%; with a debiasing baseline intervention, this increases further to 99%. VFT achieves this by substantially increasing how often models verbalize the influence of cues, from 8% to 43% after VFT, and up to 94% after RL. Baselines remain low even after RL (11% and 1%). Our results show that teaching models to explicitly verbalize reward hacking behavior before RL significantly improves their detection, offering a practical path toward more transparent and safe AI systems.
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
Authors:
Jorio Cocola, Dylan Feng
Date:
December 10, 2025
Citations:
0
AI agents find $4.6M in blockchain smart contract exploits
Authors:
Fellow: Winnie Xiao
Date:
December 1, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.