MATS Alumnus
Su Hyeong Lee
Collabortators
Su Hyeong Lee, Richard Ngo
Citations
Abstract
What does it even mean to average neural networks? We investigate the problem of synthesizing a single neural network from a collection of pretrained models, each trained on disjoint data shards, using only their final weights and no access to training data. In forming a definition of neural averaging, we take insight from model soup, which appears to aggregate multiple models into a singular model while enhancing generalization performance. In this work, we reinterpret model souping as a special case of a broader framework: Amortized Model Ensembling (AME) for neural averaging, a data-free meta-optimization approach that treats model differences as pseudogradients to guide neural weight updates. We show that this perspective not only recovers model soup but enables more expressive and adaptive ensembling strategies. Empirically, AME produces averaged neural solutions that outperform both individual experts and model soup baselines, especially in out-of-distribution settings. Our results suggest a principled and generalizable notion of data-free model weight aggregation and defines, in one sense, how to perform neural averaging.
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
Authors:
Jorio Cocola, Dylan Feng
Date:
December 10, 2025
Citations:
0
AI agents find $4.6M in blockchain smart contract exploits
Authors:
Fellow: Winnie Xiao
Date:
December 1, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.