MATS Fellow:
Roy Rinberg, Daniel Reuter, Adam Karvonen
Authors:
Roy Rinberg, Adam Karvonen, Alexander Hoover, Daniel Reuter, Keri Warr
Citations
Abstract:
As large AI models become increasingly valuable assets, the risk of model weight exfiltration from inference servers grows accordingly. An attacker controlling an inference server may exfiltrate model weights by hiding them within ordinary model outputs, a strategy known as steganography. This work investigates how to verify model responses to defend against such attacks and, more broadly, to detect anomalous or buggy behavior during inference. We formalize model exfiltration as a security game, propose a verification framework that can provably mitigate steganographic exfiltration, and specify the trust assumptions associated with our scheme. To enable verification, we characterize valid sources of non-determinism in large language model inference and introduce two practical estimators for them. We evaluate our detection framework on several open-weight models ranging from 3B to 30B parameters. On MOE-Qwen-30B, our detector reduces exfiltratable information to <0.5% with false-positive rate of 0.01%, corresponding to a >200x slowdown for adversaries. Overall, this work further establishes a foundation for defending against model weight exfiltration and demonstrates that strong protection can be achieved with minimal additional cost to inference providers.
What Happens When Superhuman AIs Compete for Control?
Authors:
Steven Veld
Date:
January 11, 2026
Citations:
0
AI Futures Model: Timelines & Takeoff
Authors:
Brendan Halstead, Alex Kastner
Date:
December 30, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.