MATS Fellow:
Jonah Weinbaum
Authors:
Joshua Clymer, Jonah Weinbaum, Robert Kirk, Kimberly Mai, Selena Zhang, Xander Davies
Citations
Abstract:
Existing evaluations of AI misuse safeguards provide a patchwork of evidence that is often difficult to connect to real-world decisions. To bridge this gap, we describe an end-to-end argument (a"safety case") that misuse safeguards reduce the risk posed by an AI assistant to low levels. We first describe how a hypothetical developer red teams safeguards, estimating the effort required to evade them. Then, the developer plugs this estimate into a quantitative"uplift model"to determine how much barriers introduced by safeguards dissuade misuse (https://www.aimisusemodel.com/). This procedure provides a continuous signal of risk during deployment that helps the developer rapidly respond to emerging threats. Finally, we describe how to tie these components together into a simple safety case. Our work provides one concrete path -- though not the only path -- to rigorously justifying AI misuse risks are low.
What Happens When Superhuman AIs Compete for Control?
Authors:
Steven Veld
Date:
January 11, 2026
Citations:
0
AI Futures Model: Timelines & Takeoff
Authors:
Brendan Halstead, Alex Kastner
Date:
December 30, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.