MATS Fellow:
Linus Luu
Authors:
Andrew Garber, Rohan Subramani, Linus Luu, Mark Bedaywi, Stuart Russell, Scott Emmons
Citations
Abstract:
A wide variety of goals could cause an AI to disable its off switch because ``you can’t fetch the coffee if you’re dead.'' Prior theoretical work on this shutdown problem assumes that humans know everything that AIs do. In practice, however, humans have only limited information. Moreover, in many of the settings where the shutdown problem is most concerning, AIs might have vast amounts of private information. To capture these differences in knowledge, we introduce the Partially Observable Off-Switch Game (POSG), a game-theoretic model of the shutdown problem with asymmetric information. Unlike in the fully observable case, we find that in optimal play, even AI agents assisting perfectly rational humans sometimes avoid shutdown. As expected, increasing the amount of communication or information available always increases (or leaves unchanged) the agents' expected common payoff. But counterintuitively, introducing bounded communication can make the AI defer to the human less in optimal play even though communication mitigates information asymmetry. Thus, designing safe artificial agents in the presence of asymmetric information requires careful consideration of the tradeoffs between maximizing payoffs (potentially myopically) and maintaining AIs’ incentives to defer to humans.
What Happens When Superhuman AIs Compete for Control?
Authors:
Steven Veld
Date:
January 11, 2026
Citations:
0
AI Futures Model: Timelines & Takeoff
Authors:
Brendan Halstead, Alex Kastner
Date:
December 30, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.