MATS Alumnus
Kai Fronsdal
Collabortators
Kai Fronsdal, David Lindner
Citations
Abstract
We propose a suite of tasks to evaluate the instrumental self-reasoning ability of large language model (LLM) agents. Instrumental self-reasoning ability could improve adaptability and enable self-modification, but it could also pose significant risks, such as enabling deceptive alignment. Prior work has only evaluated self-reasoning in non-agentic settings or in limited domains. In this paper, we propose evaluations for instrumental self-reasoning ability in agentic tasks in a wide range of scenarios, including self-modification, knowledge seeking, and opaque self-reasoning. We evaluate agents built using state-of-the-art LLMs, including commercial and open source systems. We find that instrumental self-reasoning ability emerges only in the most capable frontier models and that it is highly context-dependent. No model passes the the most difficult versions of our evaluations, hence our evaluation can be used to measure increases in instrumental self-reasoning ability in future models. We open-source our evaluations at https://github.com/kaifronsdal/Self-Reasoning-Evals.
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
Authors:
Jorio Cocola, Dylan Feng
Date:
December 10, 2025
Citations:
0
AI agents find $4.6M in blockchain smart contract exploits
Authors:
Fellow: Winnie Xiao
Date:
December 1, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.