Estimating the Empowerment of Language Model Agents

MATS Fellow:

Jinyeop Song

Authors:

Jinyeop Song, Jeff Gore, Max Kleiman-Weiner

Citations

1 Citations

Abstract:

As language model (LM) agents become more capable and gain broader access to real-world tools, there is a growing need for scalable evaluation frameworks of agentic capability. However, conventional benchmark-centric evaluations are costly to design and require human designers to come up with valid tasks that translate into insights about general model capabilities. In this work, we propose information-theoretic evaluation based on empowerment, the mutual information between an agent's actions and future states, as an open-ended method for evaluating LM agents. We introduce EELMA (Estimating Empowerment of Language Model Agents), an algorithm for approximating effective empowerment from multi-turn text interactions. We validate EELMA on both language games and scaled-up realistic web-browsing scenarios. We find that empowerment strongly correlates with average task performance, characterize the impact of environmental complexity and agentic factors such as chain-of-thought, model scale, and memory length on estimated empowerment, and that high empowerment states and actions are often pivotal moments for general capabilities. Together, these results demonstrate empowerment as an appealing general-purpose metric for evaluating and monitoring LM agents in complex, open-ended settings.

Recent research

What Happens When Superhuman AIs Compete for Control?

Authors:

Steven Veld

Date:

January 11, 2026

Citations:

0

AI Futures Model: Timelines & Takeoff

Authors:

Brendan Halstead, Alex Kastner

Date:

December 30, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?