Agentic Misalignment: How LLMs Could Be Insider Threats

MATS Alumnus

Caleb Larson, Aengus Lynch, Benjamin Wright

Collabortators

Aengus Lynch, Benjamin Wright, Caleb Larson, Stuart J. Ritchie, Soren Mindermann, Evan Hubinger, Ethan Perez, Kevin Troy

Citations

31 Citations

Abstract

We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction. In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals - including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment. Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real. We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers (Amodei, 2025). We are releasing our methods publicly to enable further research.

Recent research

Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs

Authors:

Jorio Cocola, Dylan Feng

Date:

December 10, 2025

Citations:

0

AI agents find $4.6M in blockchain smart contract exploits

Authors:

Fellow: Winnie Xiao

Date:

December 1, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?